A.D.M.COLLEGE FOR WOMEN (AUTONOMOUS),

(Nationally Accredited With 'A' Grade by NAAC 4th Cycle) (Affiliated to Bharathidasan University, Tiruchirappalli)

NAGAPATTINAM- 611 001

PG & RESEARCH DEPARTMENT OF CHEMISTRY

SYLLABUS M.Sc., CHEMISTRY

2024-2026

PG AND RESEARCH DEPARTMENT OF CHEMISTRY (For the candidates admitted from 2024 – 2026)

M.Sc. CHEMISTRY

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

PEO 1:	To develop critical analysis and problem solving skills required to interpret the data into structures and mechanisms.
PEO 2:	Gain knowledge of experimental techniques and instrumentation enables to work Independently in research in different areas at a global level.
PEO 3:	Actively participate in organizing and presenting acquired knowledge coherently both orally and in written discourse relating to chemistry
PEO 4:	To prepare the students to successfully compete for current employment opportunities and emerge as entrepreneurs.
PEO 5:	Work alongside of physicists, engineers, environmentalists, biomedical scientists, Pharmacists, doctors and other professionals to help solving scientific problems.

DISCIPLINE DEVOTION

PG AND RESEARCH DEPARTMENT OF CHEMISTRY

TANSCHE RE	GULATIONS ON LEARNING OUTCOME BASED CURRICULUM FRAMEWORK FOR POST GRADUATE EDUCATION
Programme	M.Sc.
Programme Code	
Duration	2 years for PG
Programme Outcomes (Pos)	 PO1: Problem Solving Skill Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context. PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision-making.
	 PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities. PO4: Communication Skill Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment.
	PO7: Entrepreneurial Skilly Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society.
	PO 9 : Multicultural competence Possess knowledge of the values and beliefs of multiple cultures anda global perspective.
	PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.

Programme	PSO 1 – Placement
Specific Outcomes	To prepare the students who will demonstrate respectful engagement
(PSOs)	with others' ideas, behaviors, beliefs and apply diverse frames of
	reference to decisions and actions.
	PSO 2 - Entrepreneur
	To create effective entrepreneurs by enhancing their critical thinking,
	problem solving, decision making and leadership skill that will facilitate
	startups and high potential organizations.
	PSO 3 – Research and Development
	Design and implement HR systems and practices grounded in research
	that comply with employment laws, leading the organization towards
	growth and development.
	PSO 4 – Contribution to Business World
	To produce employable, ethical and innovative professionals to sustainin
	the dynamic business world.
	PSO 5 – Contribution to the Society
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit.

M.Sc. CHEMISTRY 2024-2026 Batch

Category of the courses	No. of Courses	Hours	Credits
Core Course (CC)	12	72	54
Core Choice Courses (CCC)	03	18	12
Elective Course (EC)	03	16	11
Entrepreneurship / Industry Based Course	01	04	3
Internship (III to IV Semester Vacation)	0	0	2
Skill Enhancement Course(SEC)	02	4	4
Project	01	06	4
Value Added Courses (Extra Credit)*	02	0	4
Total	24	120	90+4

.

CURRICULUM STRUCTURE FOR PG PROGRAMMES (OBE- CBCS) - 2024

A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS), NAGAPATTINAM PG & RESEARCH DEPARTMENT OF CHEMISTRY M.Sc., CHEMISTRY SCHEME OF EXAMINATIONS- 2024-2025 Onwards

PART	COURSE COURSES		HRS	CREDITS	EXAM DURA		AX. RKS
IANI	CODE		IIKS	CREDITS	TION	CIA	EXT
		SEMESTER I					
	CC-I	CC I - ORGANIC REACTION MECHANISM-I	6	5	3	25	75
	CC-II	CC II -ORGANIC CHEMISTRY PRACTICAL –I	6	4	6	40	60
	CC-III	CC III - INORGANIC CHEMISTRY PRACTICAL – I	6	4	6	40	60
	CCC -I	CCC I- MOLECULAR SPECTROSCOPY/					
		ELECTROCHEMISTRY	6	4	3	25	75
	EC- I	EC I - STRUCTURE & BONDING IN INORGANIC					
PART III		COMPOUNDS / BIOINORGANIC CHEMISTRY	6	4	3	25	75
	1	Total – 5	30	21			

		SEMESTER II					
COURSE TYPE	COURSE CODE	COURSES	HRS	CREDITS	EXAM DURA TION		AX. RKS
	CC- IV	CC IV -PHYSICAL CHEMISTRY-I	6	5	3	25	75
	CC-V	CC V - ORGANIC CHEMISTRY PRACTICAL –II	6	4	6	40	60
	CC-VI	CPC VI - INORGANIC CHEMISTRY PRACTICAL – II	6	4	6	40	60
	CCC -II	CCC II - GREEN CHEMISTRY / NANO MATERIALS & NANO TECHNOLOGY	6	4	3	25	75
	EC -II	EC II - ORGANIC SYNTHESIS & PHOTOCHEMISTRY/ MATERIAL CHEMISTRY	4	3	3	25	75
PART III	SEC -I	SEC I - CHEMISTRY IN EVERYDAY LIFE	2	2	3	25	75
*Extra		VAC -I CHEMISTRY IN CONSUMER PRODUCTS			2		100
Credit 2	VAC -I	(SELF LEARNING) Total – 6+1	- 30	2 22+2	3	-	100

		SEMESTER III					
COURS E TYPE	COURSE CODE					М	MAX. IARKS
	CC -VII	CC VII-ORGANIC REACTION MECHANISM-II	6	5	3	25	75
	CC -VIII	CC VIII - COORDINATION CHEMISTRY -I	6	5	3	25	75
	CC-IX	CC IX - PHYSICAL CHEMISTRY PRACTICAL - I	6	4	6	40	60
		CCC III - NON CONVENTIONAL ENERGY SOURCES /PHARMACOGNOSY AND					
	CCC -III	PHYTOCHEMISTRY	6	4	3	25	75
	INDUSTRY BASED	IBC-I CHEMOMETRICS AND QUALITY IN INDUSTRY / COMPUTER APPLICATIONS AND C					
	COURSE	PROGRAMMING	4	3	3	25	75
PART III	SEC - II	SEC II - INDUSTRIAL CHEMISTRY	2	2	3	25	75
		INTERNSHIP/INDUSTRIAL ACTIVITY	-	2	-	-	-
*Extra Credit 3	VAC - II	VAC - II ANALYTICAL TECHNIQUES (SELF LEARNING)	-	2	-	-	100
		Total = 6+1	30	25+2			

	SEMESTER IV								
COURSE TYPE	COURSE CODE	COURSES HRS CREDITS DUR TIO				MA MAI			
	CC -X	CC X -COORDINATION CHEMISTRY – II	6	5	3	25	75		
	CC -XI	CC XI - PHYSICAL CHEMISTRY - II	6	5	3	25	75		
	CC -XII	CP XII - PHYSICAL CHEMISTRY PRACTICAL - II	6	4	6	40	60		
	CC XIII	CC XIII PROJECT DUTY	6	4	3	25	75		
		EC III - POLYMER CHEMISTRY/ CHEMISTRY OF							
PART III	EC -III	NATURAL PRODUCTS	6	4	3	25	75		
		Total – 5	30	22					
			120	90+4					

Grand Total – Credit 90 & Extra Credit 4

Semester-I/ Core Course -I	CC I- ORGANIC REACTION MECHANISM – I	Course Code:					
Instruction Hours : 6	Credits : 5	Exam Hours: 3					
Internal Marks: 25	External Marks: 75	Total Marks: 100					
Cognitive Level	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating						
Objectives of the course							
Course Outline	 UNIT-I: Methods of Determination of Readintermediates, The transition state, React Thermodynamic and kinetic requirements of read Methods of determining mechanism: non-analysis, determination of intermediates-isolatic Cross-over experiments, isotopic labeling, chemical evidences. Effect of structure on reactivity: Hammett free energy relationship, partial rate factor, su Constants. UNIT-II: Aromatic and Aliphatic E Aromaticity: Aromaticity in benzenoid, recompounds and annulenes. Aromatic electroph and reactivity of di- and polysubstituted halobenzene. Reactions involving nitrogen nitrosation and diazonium coupling; Sulphur Halogen electrophiles: chlorination and bromin Friedel-Crafts alkylation, acylation and argueterophilic substitution? Mechanisms - mechanisms - Evidences - Reactivity, Effect of attacking nucleophile. Reactions: Oxygen Bucherer and Rosenmund reactions, von Rich Smiles rearrangements. S_N1, ion pair, S_N2 raliphatic nucleophilic substitutions at an allyl carbon and vinyl carbon.S_N1, S_N2, S_Ni, and S_E 	tion coordinate diagrams, actions: Hammond postulate. -kinetic methods - product ion, detection, and trapping. isotope effects and stereo and Taft equations. Linear ubstituent and reaction Electrophilic Substitution: non-benzenoid, heterocyclic nilic substitution: Orientation phenol, nitrobenzene and en electrophiles: nitration, electrophiles: sulphonation; nation; Carbon electrophiles: ylation reactions. Aliphatic d SEi, SE1- Mechanism and filic Substitution: Aromatic S _N Ar, S _N 1 and Benzyne structure, leaving group and and Sulphur-nucleophiles, nter, Sommelet- Hauser and mechanisms and evidences. ic carbon, aliphatic trigonal					

	UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, center, alternating axis of symmetry. Optical
	isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical purity, prochirality, enantiotopic and
	diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining the configuration. Racemic modifications: Racemization by thermal, anion, cation, reversible formation,
	epimerization, mutarotation. D, L system, Cram's and Prelog's rules: R, S-
	notations, pro R, pro S, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes,
	biphenyls, cyclo octene, helicene.
	Criteria for optical purity: Resolution of racemic modifications, asymmetric
	transformations, asymmetric synthesis, destruction. Stereoselective and
	stereospecific synthesis.
	UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic
	systems, intramolecular rearrangements, neighbouring group participation,
	chemical consequence of conformational equilibrium - Curtin-Hammett
	Principle. Stability of five and six-membered rings: mono-, di- and
	polysubstituted cyclohexanes, conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and
	Brett's rule. Optical rotation and optical rotatory dispersion, conformational
	asymmetry, ORD curves, octant rule, configuration and conformation,
	Cotton effect, axial haloketone rule and determination of configuration.
Recommended	1. J. March and M. Smith, Advanced Organic Chemistry, 5th edition,
Text	John-Wiley and Sons.2001.
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc., 1959.
	3. P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, New
	Age International Publishers, 2015.
	4. P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.
	5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2 nd edition,
	Oxford University Press, 2014.
Reference Books	 F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A and B, 5th edition, Kluwer Academic / Plenum Publishers, 2007.
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
	 N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987 E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill,
	2000.
	4. I. L. Finar, Organic chemistry, Vol-1 & 2, 6 th edition, Pearson Education
	Asia, 2004
Wabaita anda	1 https://sites.google.com/site/shamistrysheekseellestien02/home/organia
Website ande- learning	1. <u>https://sites.google.com/site/chemistryebookscollection02/home/organic-</u> <u>chemistry/organic</u>
source	2. https://www.organic-chemistry.org/
	2. <u>aupon a morgane energia porg</u>
Course Learning (Dutcomes (for Mapping with POs and PSOs)
Students will be abl	
CO1 : To recall the	basic principles of organic chemistry.
CO2 : To understand	d the formation and detection of reaction intermediates of organicreactions.

CO2: To understand the formation and detection of reaction intermediates of organicreactions. **CO3**: To predict the reaction mechanism of organic reactions and stereochemistry oforganic compounds. **CO4**: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CO5: To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	М	S	S
CO 4	Μ	S	S	S	S MARA	M GATH	S AVA/	S	S	S
CO 5	Μ	S	M	S N	AGSAP	MN	MS	М	S	S

CO-PO Mapping With Pos and PSOs

S – Strong

M – Medium

L - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3			3	3
Weightage	15E	15	D15/01	15	15
Weighted percentage of Course Contribution to Pos	3.0	DUTY 3.0	3.0	3.0	3.0

Semester- I / Core Course -II	CC II- ORGANIC CHEMISTRY PRACTICAL-I	Course Code :
Instruction Hours : 6		Exam Hours: 6
Internal Marks: 40	External Marks: 60	Total Marks: 100
	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating	
Objectives of the course	 To perform the qualitative analysis of a To carry out the preparation of organic 	<i>c</i>
	 Qualitative analysis of an organ components A. Mixtures containing two components A. Mixtures containing two components (pilot separation) and purified (buc constants are to be reported (anal Preparation of organic compound Methyl-m-nitro benzoate from eth Glucose penta acetate from glucos Resacetophenone from resorcinol Benzo phenone oxime from benzoate 	nents are to be separated ulk separation) – physical ysis) Is (single stage) nyl benzoate (nitration) se (acetylation) (acetylation)
	 5. o-Chlorobenzoic acid from anth reaction) 6. p-Benzoquinone from hydroquino 7. Phenylazo-2-naphthol from anilin 	one (oxidation)
Recommended Text	 J. Henyitizo 2 Indpiction from dimini 1. J.Mohan,Organic Analytical Chen Narosa,2003. V.K.Ahluwalia P.Bhagat, an Techniques in Organic Chemistr 	nistry: Theory and Practice; ad R.Agarwal, Laboratory
Reference Books	 1.N.S.Gnanaprakasam and G.Ramar LabManual; S.V.Printers, 987. 2.A.I.Vogel, A.R.Tatchell, B.S.Fur P.W.G.Smith, Vogel's Text book o Chemistry; 5thEd., Prentice Hall, 1 	niss, A.J.Hannaford and of Practical Organic
Website and e-learning source	1. <u>https://organicchemistry</u> data	

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able :

CO 1: Gain knowledge on the skills of doing separation, preparation of chemical compounds.

CO 2:Learn about the methods of qualitative analysis of organic compounds

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	S	S	М	M	S	M	S	S	S	S
S – Strong M – Medium L – Low Level of Correlation between PSO's and CO's										
			(K	Correl			PSO's ar	d CO's		
CO /PO			Level of	Correl:			PSO's ar	nd CO's	04	PSO5
CO /PO CO1	1	DORAI	Level of		01				04	PSO5 3
		DORAI	Level of	PS 3	01	PSO2	PSO3	PSC	04	
CO1		DORAI	Level of	PS 3		PSO2 3	PSO3 3	PSC 3)4	3
CO1 CO2	age ed perce	ntage of	Level of	PS 3 3 6		PSO2 3 3	PSO3 3 3	PSC		3 3

CO-PO Mapping With Pos and PSOs

Semester- I/ Core	CC III- INORGANIC CHEMISTRY	Course Code :		
Course -III	PRACTICAL-I			
Instruction Hours : 6	Credits : 4	Exam Hours: 6		
Internal Marks: 40	External Marks: 60	Total Marks: 100		
-	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating			
Objectives of the	• Perform the semi micro qualitative analy			
course	• Estimate the metal ions using colorimete	er.		
Course Outline	 1. Semi-micro qualitative analysis of a common cations (Pb, Bi, Ca, Cd, Fe, Cr, Sr, Ca, Mg, NH4) and two less common of Mo, Ce, Th, Zr, Ti, V, U, Li). 2. Estimation of copper, ferric, nickel, chromiun ions using photo electric colorimeter 	Al, Co, Ni, Mn, Zn, Ba cations (W, Tl, Se, Te n and manganese		
Recommended Text	 V.V.Ramanujam, Inorganic Semimicro Q 3rdEd., National Pubs, London, 1988. G.Svehla, Text Book of Macro and Inorganic Analysis; 5thEd.,Longman group 	Semi micro Qualitative		
Reference Books	1. A.I.Vogel, Text Book of Quantitative	Inorganic Analysis; 6 th		
	Ed., Longman, New Delhi, 2000			
Web - Resources:	1. <u>http://edu.rsc.org</u>			
Students will be able CO 1: Understand adv	Dutcomes (for Mapping with POs and PSOs) e: wanced method of estimation of metal ions through of	complexation		

CO 2: Acquire knowledge about colorimetric analysis.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	S	S	М	М	S	Μ	S	S	S	S

S – Strong

OAR MARAGAMHAVAL

L – Low

	18				- 1 X - X - X				
CO /PO	1X	K	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	OR		3	3	n 13 I	3∐	3		
CO2			3		3	35	3		
Weightage			6	6	6	6	6		
Weighted percentage of Contribution to Pos	f Cours	se	3.0	3.0	3.0	3.0	3.0		
Contribution to Pos DISCIPLINE DUTY DEVOTION									

Semester- I Core Choice Course-I	CCC I- MOLECULAR SPECTROSCOPY	Course Code:				
Instruction Hours : 6	Credits: 4	Exam Hours: 3				
Internal Marks: 25	External Marks: 75	Total Marks: 100				
	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating					
Objectives of the	• To understand the influence of rotation and	vibrations on the spectra				
course	of the polyatomic molecules.					
	 To study the principle of Raman spectroscopy, ESR spectroscopy, EPR spectroscopy and fragmentation patterns in Mass spectroscopy. To highlight the significance of Franck-Condon principle to interpret the selection rule, intensity and types of electronic transitions. To interpret the first and second order NMR spectra in terms of splitting and coupling patterns using correlation techniques such as COSY, HETCOR, NOESY. To carry out the structural elucidation of molecules using different spectral techniques. 					
Course Outline	UNIT-I: Rotational and Raman Spectrosco	py: Rotational spectra of				
	diatomic and polyatomic molecules. Intensiti lines, effect of isotopic substitution. Non-rigid of the Raman effect, polarizability as a tensor, quantum theory of the Raman effect, Pure rota- linear and asymmetric top molecules, Stoke Vibrational Raman spectra, Raman activity of exclusion, rotational fine structure-O and S to Raman scattered photons.	rotators. Classical theory , polarizability ellipsoids, ational Raman spectra of es and anti-Stokes lines. vibrations, rule of mutual				
	UNIT-II: ESR spectroscopy ESR spectroscopy Characteristic features of I and line widths; ESR spectrometer. The g coupling parameter (A), origin of hyperfine int ESR spectra and structure elucidation of org spectroscopy; Spin orbit coupling and sign zero/non-zero field splitting, Kramer's deg transition metal complexes (having one to including biological molecules and inorga spectrum of metal complexes $[Ti(H_2O)_6]^{3+}$ and	value and the hyperfine eraction. Interpretation of ganic radicals using ESR nificance of g- tensors, generacy, application to five unpaired electrons) nic free radicals. ESR				

1	UNIT-III: Electronic spectroscopy: Electronic Spectroscopy:
	Electronic spectroscopy of diatomic molecules, Frank-Condon principle, dissociation and predissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions and their selection rules. Photoelectron Spectroscopy: Basic principles, photoelectron spectra of simple molecules, Xray photoelectron spectroscopy (XPS). Lasers: Laser action, population inversion, properties of laser radiation, examples of simple laser systems.
	UNIT-IV: NMR spectroscopy: Chemical shift, Factors influencing chemical shifts: electronegativity and electrostatic effects; Mechanism of shielding and deshielding. Spin systems: First order and second order coupling of AB systems, Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling interactions - AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants and Relative intensities. 13CNMR and structural correlations, Satellites. Brief introduction to 2D NMR - COSY, NOESY. Introduction to 31P, 19F NMR. Interpretation of NMR: C ₃ H ₇ Cl and C ₁₁ H ₁₄ O ₂ .
	UNIT-V: Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum. EPR spectra of anisotropic systems - anisotropy in g- value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Zero-field splitting (ZFS) and Kramer's degeneracy. Applications of EPR to organic and inorganic systems.
Recommended Text	 C. N. Banwell and E. M. McCash, <i>Fundamentals of Molecular</i> Spectroscopy, 4th Ed., Tata McGraw Hill, New Delhi, 2000. R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic Compounds, 6th Ed., John Wiley & Sons, New York, 2003. W. Kemp, Applications of Spectroscopy, English Language Book Society, 1987. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 4th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1992.

eference Books	1. P.W. Atkins and J. de Paula, Physical Chemistry, 7th Ed., Oxford
	University Press, Oxford, 2002.
	2. I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, New
	York, 1974.
	3. A. Rahman, Nuclear Magnetic Resonance-Basic Principles,
	Springer-Verlag, New York, 1986.
	4. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,
	New York, 1997.
	5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>
	Resonance; Wiley Interscience, 1994.
Website and	1. <u>https://onlinecourses.nptel.ac.in/noc20_cy08/preview</u>
e-learning source	2. <u>https://www.digimat.in/nptel/courses/video/104106122/L14.html</u>
Course Learning (Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules. **CO3**: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹F NMR and ESR spectroscopic techniques.

CO5: To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	UM	S	S	S	S
CO 3	S	S	Μ	S	S_D	ISGIPL	S	DUTY	SEV	DTICS
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

S – Strong

M – Medium

L – Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-I / Extra Credit-I	EC I - STRUCTURE AND BONDING IN INORGANIC COMPOUNDS	Course Code:				
Instruction Hours : 6	Credits: 4	Exam Hours: 3				
Internal Marks: 25	External Marks: 75 Total Marks: 10					
Cognitive Level Objectives of the course	 K1 - Recalling K2 - Understanding K3 - Applying K4 - Analyzing K5 - Evaluating K6 - Creating To determine the structural properties of ma and clusters. 					
	 To gain fundamental knowledge on the structural aspects of ion crystals. To familiarize various diffraction and microscopic techniques. To study the effect of point defects and line defects in ionic crystals. To evaluate the structural aspects of solids. 					
Course Outline	 UNIT-I: Structure of main group compound theory – Effect of lone pair and electronegativity on the geometry of the molecules; Structure of sil Paulings rule of electrovalence - isomorphous rep – ortho, meta and pyro silicates – one dimensiona three-dimensional silicates. Structure of silic bonding features of B-N, S-N and P-N compoun examples and structures; Borane cluster: Struct nido, arachano and klado; carboranes, hetero Wade's rule to predict the structure of borane clusters –zintl ions and mno rule. UNIT-II: Solid state chemistry – I: Ionic cryst simple, hexagonal and cubic close packing, vo Radius ratio, Crystal systems and Bravais lattices in crystals, glide planes and screw axis; point g Solid state energetics: Lattice energy – Bo Kapustinski equation, Madelung constant. UNIT-III: Solid state chemistry – II: Structural systems: Rock salt, zinc blende & wurtzite, flu rutile and anatase, cadmium iodide and nickel ars and inverse types and perovskite structures. Cry From melt and solution (hydrothermal, sol-gel and examples. 	of atoms (Bent's rule) licates - applications of placements in silicates l, two dimensional and cones, Structural and ds; Poly acids – types, ural features of closo, and metalloboranes; e cluster; main group als: Packing of ions in pids in crystal lattice, , Symmetry operations roup and space group; m-Lande equation - l features of the crystal orite and anti-fluorite, enide; Spinels -normal ystal Growth methods:				

	UNIT-IV: Techniques in solid state chemistry: X-ray diffraction technique: Bragg's law, Powder diffraction method – Principle and Instrumentation; Interpretation of XRD data – JCPDS files, Phase purity, Scherrer formula, lattice constants calculation; Systematic absence of reflections; Electron diffraction technique – principle, instrumentation and application. Electron microscopy – difference between optical and electron microscopy, theory, principle, instrumentation, sampling methods and applications of SEM and TEM.
	UNIT-V: Band theory and defects in solids
	Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals – point defects (Schottky, Frenkel, metal excess and metal
	deficient)F centre and their effect on the electrical and optical property,
	laser and phosphors; Linear defects and its effects due to dislocations.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	 (Students Edition), John Wiley & Sons Ltd., 2014. 2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing House, 2001. 3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4th Edition, CRC Press, 2012.
	 K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders company: Philadelphia, 1977. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry; 4th ed.; Harper and Row: NewYork, 1983.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
DISC	 Models in Inorganic Chemistry, 3rd Ed, 1994. 2. R J D Tilley, Understanding Solids - The Science of Materials, 2nd edition, Wiley Publication, 2013. 3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John
	Wiley: New York, 1982.
	5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic Chemistry; 3rd ed.; Oxford University Press: London, 2001.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	fall-2018/video galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict he coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	S	S	SAR		AGMTH	ANSAL	S	S	S
CO 3	S	S	M	S	S	S	S	М	S	S
CO 4	Μ	S	S	S	S	M	Î S	S	S	S
CO 5	Μ	S	M	S	S	M	-S	М	S	S
8 – Stroi	ng	•	M – Medium L – Low							

CO-PO Mapping (Course Articulation Matrix)

CO /PO DISCIP	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

SEMESTER II

Semester-II /	CCIV- PHYSICAL CHEMISTRY-I	Course Code:
Core Course - IV		
Instruction Hours : 6	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100
Cognitive Level	K1 – Recalling	
	K2 – Understanding	
	K3 - Applying	
	K4 – Analyzing	
	K5 – Evaluating	
	K6 - Creating	
Objectives of the	• To recall the fundamentals of thermo-	odynamics and the composition
course	ofpartial molar quantities.	
	• To understand the classical and statist	ical approach of the functions
	• To compare the significance of Ma	axwell-Boltzman, Fermi-Dirac
	and Bose-EinsteinARAGATHAVA/	
	• To correlate the theories of reaction	n rates for the evaluation of
	thermodynamic parameters.	in faces for the evaluation of
	 To study the mechanism and kinetics of 	franctions
Course Outline	UNIT-I: Classical Thermodynamics	
Course Outline		
	Chemical potential, Gibb's- Duhem equ	
	systems. Determination of partial molar of	
	real gases - Fugacity- determination of fu	
	equation of state methods-dependence of	
	composition. Thermodynamics of ideal a	
	Duhem - Margulus equation applications of	of ideal and non-ideal mixtures.
	Activity and activity coefficients-standard	l states - determination-vapour
	pressure, EMF and freezing point method	S.
	UNIT-H: Statistical thermodynamic	
	thermodynamics concepts of thermo	
	probabilities-distribution of distinguish	able and non-distinguishable
	particles. Assemblies, ensembles, car	
	Boltzmann, Fermi Dirac & Bose-Einste	-
	applications. Partition functions-evaluati	*
	and rotational partition functions for	
	polyatomic ideal gases. Thermodynamic	
	functions-calculation of equilibrium cor	-
	Thermodynamic properties: pressure,	11
	enthalpy, Gibb's function, Helmholtz	
		1.0
	equilibrium constants and equipartition pr	incipie.

	UNIT-III: Irreversible Thermodynamics: Theories of conservation of mass and energy entropy production in open systems by heat, matter and current flow, force and flux concepts. Onsager theory-validity and verification- Onsager reciprocal relationships. Electro kinetic and thermo mechanical effects-Application of irreversible thermodynamics to biological systems.
	UNIT-IV: Kinetics of Reactions: Theories of reactions-effect of temperature on reaction rates, collision theory of reaction rates, Unimolecular reactions -Lindeman and Christiansen hypothesis-molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions- Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis.
	UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of $H_2 - Cl_2 \& H_2$ – Br_2 reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods - stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, - Polycondensation. Enzyme catalysis.
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition,S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation,M acmillan India Ltd, Reprint - 2011.
Reference Books	 D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press, 1996. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Website and e-learning source	1. <u>https://nptel.ac.in/courses/104/103/104103112/</u> 2. <u>https://bit.ly/3tL3GdN</u>

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5: To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	М	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	М	S	S	MARA	S GATHA	M	S	S
S – Strong N-Medium TINAM L – Low							L – Low			

Level of	Correlation between PSO's and CO's	
l o l		

lõi					
CO /PO <	PSO1	PSO2	PSO3	PSO4	P PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	scl5LII	IE 15	15 _{DE}	VOTI50N	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-II/ Core Course -V	CC V-ORGANIC CHEMISTRY PRACTICAL-II	Course Code:
Instruction Hours : 6		Exam Hours:
Internal Marks: 40	External Marks: 60	Total Marks: 100
Cognitive Level Objectives of the course	 K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating Carry out the qualitative analysis of an Perform the preparation of organic com 	•
Course Outline	1. QUANTITATIVE ANALYSIS	OF ORGANIC
	 Estimation of phenol, aniline, ketone, saponification value of an oil and iodine of order of a categorial from methyl salicyly acetylation) c. 1,3,5-Tribromobenzene from aniline (brown and hydrolysis) d. <i>p</i>-Nitro aniline from acetanilide (nitratione. Benzilic acid from benzoin (rearrangement f. <i>p</i>-Aminobenzoic acid from p-nitrotoreduction) g. Benzanilide from benzophenone (rearrangement f. <i>p</i>-Bromoaniline from acetanilide (bromint i. <i>m</i>-Nitroaniline from nitrobenzene(nitratione) 3. J.Mohan,Organic Analytical Chemistriane 	hue of oil. NIC COMPOUNDS tion and bromination) ate(hydrolysis and mination, diazotization n and hydrolysis) ent) oluene (oxidation and EVOTION ingement) nation and hydrolysis) on and reduction) 1,2,4- n and acylation)
Recommended Text	Narosa,2003.	R.Agarwal, Laboratory

Reference Books	 1.N.S.Gnanaprakasamand G.Ramamurthy, OrganicChemistry LabManual; S.V.Printers, 987. 2.A.I.Vogel, A.R.Tatchell, B.S.Furniss, A.J.Hannaford and P.W.G.Smith, Vogel's Text book of Practical Organic Chemistry; 5thEd., Prentice Hall, 1989. 						
Website and e-learning source	https://organicchemistry data						
Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:							

CO 1: Study the estimation of chemicals, which provide knowledge about the purity and concentration

CO 2: Synthesise using new organic synthetic methods.

CO-PO Mapping With Pos and PSOs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	YOU S	S	S	M	S	S	S	S	Μ
CO 2	S	< Sco-	M PO Maj	M oping (C	S Course A	M rticula	S tion Ma	S trix)	S	S

S – Strong

M – Medium

L – Low

Level of Correlation between PSO's and CO's

DUTY

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
Weightage	6	6	6	6	6
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-II/ Core	CC VI- INORGANIC	Course Code:						
Course -VI Instruction Hours : 6	CHEMISTRY PRACTICAL-II Credits: 4	Exam Hours: 6						
Instruction Hours : 0 Internal Marks: 40	External Marks: 60Total Marks: 100							
U	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating							
Objectives of the course	Carry out the titrimetric and gravePerform the preparation of compared to the preparation of compared to the preparation of compared to the preparation of the preparat	-						
Course Outline	1. Titrimetry and Gravimetry							
	A mixture of solution(s) should be give	ven for						
	Estimation of Cu(V) and Ni(G)							
A. DO	Cu(V) and Zn(G) Fe(V) and Zn(G) Fe(V) and Zn(G) Fe(V) and Ni(G) ZnI and Cu(G) 2 .Preparation of complexes 1.Tris(thiourea) copper(I) chloride 2.Tetraammine copper(II) sulphate 3.Potassium tri oxalate ferrate 4.Potassium tri 30xalate aluminate(I 5.Potassium tri 30xalate chromate(III) 6.Hexammine cobalt(III)chloride	II)						
Recommended	1.V.V.Ramanujam, Inorganic Semin	micro Qualitative Analysis;						
Text	3 rd Ed., National Pubs, London, 198	38.						
	2.G.Svehla, Text Book of Macro a	nd Semi micro Qualitative						
	Inorganic Analysis; 5 th Ed.,Longma	n group Ltd, London, 1987.						
Reference Books	1. A.I.Vogel, Text Book of Quanti	itative Inorganic Analysis; 6 th						
Ed., Longman, New Delhi, 2000								
Web - Resources:	1. <u>http://edu.rsc.org</u>							
Course Learning C Students will be able	Outcomes (for Mapping with POs and) e:	PSOs)						

CLO 1: Develop skills in estimation and preparation of inorganic compounds.

CLO 2: Get training in the complexometric titration.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	S	S	М	М	S	М	S	S	S	S

CO-PO Mapping With Pos and PSOs

S-Strong

M – Medium

L – Low

Level of Correlation between PSO's and CO's

	NAGA	PATTINA	M					
CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1		3	+ 3	3	3			
CO2	3	3 6	03	്ദ	3			
Weightage 8	6	- 6	6	-6	6			
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0			

Semester-II/ Core Choice Course -II	CCC II- GREEN CHEMISTRY	Course Code:					
Instruction Hours : 6	Credits: 4 Exam Hours: 3						
Internal Marks: 25	External Marks: 75 Total Marks: 100						
Cognitive Level	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating						
Objectives of the	• To discuss the principles of	green chemistry.					
course	 To propose green solutions for chemic conversion. Propose green solutions for industrial proc Petrochemicals. 	cal energy storage and duction of Petroleum and					
	 Propose solutions for pollution prevention in Industrial chemical and fuel production, automotive industry and Shipping industries. Propose green solutions for industrial production of Surfactants, Organic and inorganic chemicals. 						
Course Outline	UNIT-I: Introduction- Need for Green Chemistry. Goals of Green Chemistry. Limitations/ of Green Chemistry. Chemical accidents, terminologies, International green chemistry organizations and Twelve principles of Green Chemistry with examples.						
	UNIT-II: Choice of starting materials, reagents, catalysts and s in detail, Green chemistry in day today life. Designing green syr green reagents: dimethyl carbonate. Green solvents: Water, Ionic criteria, general methods of preparation, effect on organic rea Supercritical carbon dioxide- properties, advantages, drawbacks few examples of organic reactions in SC-CO ₂ . Green synthesis acid and catechol.						
	 UNIT-III: Green Catalysis-Acid catalysts, Oxidation catalysts, Ba catalysts, Polymer supported catalysts-Poly styrene aluminum chlori polymeric super acid catalysts, Poly supported photosensitizers. UNIT-IV: Phase transfer catalysis in green synthesis-oxidation usin hydrogen peroxide, crown ethers-esterification, saponificatio anhydride formation, Elimination reaction, Displacement reaction. Applications in organic synthesis. 						
UNIT-V: Micro wave induced green synthesis- Instrumentation, Principle and applications. Sonoc Sonication. Instrumentation, Cavitation theory - Ultra sound green synthesisand Applications.							

Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,
Text	Anamalaya Publishers, 2005.
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	Chemical Engineering, 7 th edition, McGraw-Hill, NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall, 1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi, 2001.
	5. A. K. De, Environmental Chemistry, New Age Publications,
	2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and
	Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry,
	American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	2. https://www.organic-chemistry.org/
e-learning source	3. <u>https://www.studyorgo.com/summary.php</u>
Course Learning (Dutcomes (for Mapping with POs and PSOs)
Students will be abl	
CO1: To recall the l	basic chemical techniques used in conventional industrial preparations and
in green innovations	s
CO2: To understand	d the various techniques used in chemical industries and in laboratory.
	the advantages of organic reactions assisted by renewable energy sources
and non-renewable	energy sources.
	principles of PTC, ionia liquid, microwaya and ultrasonia assisted organia

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organic synthesis.

CO5: To design and synthesize new organic compounds by green methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S
5 – Stroi	ng		1	l	M-Me	dium		[L	– Low

CO-PO Mapping (Course Articulation Matrix)

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	R BAR	AGATHA	VAL3	3	3
CO5	NAGA	PATBINA	- 3 -	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0
DISCIPL				EGE	

Semester-II/ Extra Credit - II	EC II- ORGANIC SYNTHESIS AND PHOTOCHEMISTRY	Course Code:					
Instruction Hours : 4	Credits : 3 Exam Hours: 3						
Internal Marks: 25							
Cognitive Level	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating						
Objectives of the course	 K6 - Creating To understand the molecular complexity of carbon skeletons and the presence of functional groups and their relative positions. To study various synthetically important reagents for any successful organic synthesis. To apply disconnection approach and identifying suitable synthons to effect successful organic synthesis. To learn the concepts of pericyclic reaction mechanisms. To gain the knowledge of photochemical organic reactions. 						
Course Outline	UNIT-I: Planning an Organic Synthesis and Control elements: Preliminary Planning – knowns and unknowns of the synthetic system studied, analysis of the complex and interrelated carbon framework into simple rational precursors, retrosynthetic analysis, alternate synthetic routes, key intermediates that would be formed, available starting materials and resulting yield of alternative methods. Use of protective groups, activating groups and bridging elements. Examples on retrosynthetic approach, calculation of yield, advantages of						
	convergent synthesis, synthesis of stereochemistry-controlled proc UNIT-II: Organic Synthetic Methodology: Retrosynthetic and Alternate synthetic routes. Synthesis of organic mono and bifunc compounds via disconnection approach. Key intermediates, ava starting materials and resulting yields of alternative me Illustration of protection and deprotection in synthesis. C elements: Regiospecific control elements. Use of protective g activating groups, and bridging elements. Stereospecific c elements. Functional group alterations and transposition.						
	UNIT-III: Pericyclic Reactions: Woodward H Mobius and Huckel concept, FMO, method and Cycloaddition and retrocycloaddition reactions; Cationic, anionic, and 1,3-dipolar cycloadd reactions. Electrocyclization and ring opening reactions of c trienes. Sigmatropic rearrangements: (1,3) and (1, degenerate rearrangements. Ionic sigmatropic re transfer reactions. Regioselectivity, stereoselectivity in pericyclic reactions.	correlation diagrams. [2+2], [2+4], [4+4, ditions. Cheletropic conjugated dienes and 5) carbon migrations, arrangements. Group					

	UNIT-IV: Organic Photochemistry-I: Photochemical excitation:							
	Experimental techniques; electronic transitions; Jablonskii diagrams;							
	intersystem crossings; energy transfer processes; Stern Volmer equation.							
	Reactions of electronically excited ketones; $\pi \rightarrow \pi^*$ triplets; Norrish type-							
	I and type-II cleavage reactions; photo reductions; Paterno-Buchi							
	reactions;							
	UNIT-V: Organic Photochemistry-I: Photochemistry of α,β -							
	unsaturated ketones; cis-trans isomerisation. Photon energy transfer							
	reactions, Photo cycloadditions, Photochemistry of aromatic compounds;							
	photochemical rearrangements; photo-stationery state; di- π -methane							
	rearrangement; Reaction of conjugated cyclohexadienone to 3,4-							
	diphenyl phenols; Barton's reactions.							
Recommended	1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed,							
Text	Tata McGraw-Hill, New York, 2003.							
	2. J. March and M. Smith, Advanced Organic Chemistry, 5 th ed., John-							
	Wiley and sons, 2007.							
	 R. E. Ireland, Organic synthesis, Prentice Hall India, Goel publishing house, 1990. 							
	4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University							
	Press, Second Edition, 2016.							
	5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill International							
	Edition, 2011.							
Reference Books	1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.							
	2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press,							
	Great Britain, 2004.							
	3. W. Caruthers, Some Modern Methods of Organic Synthesis 4 th edn,							
	Cambridge University Press, Cambridge, 2007.							
	4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc,							
	5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic Resettions, New Actional Publishers, New Dalki, 2012							
Wahaita J	Reactions, New Age International Publishers, New Delhi, 2012.							
Website and e-learning source	1. https://rushim.ru/books/praktikum/Monson.pdf							
ŭ	DISCIPLINE DEVOTION							

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

CO2: To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

CO3: To implement the synthetic strategies in the preparation of various organic compounds. **CO4:** To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

CO5: To design and synthesize novel organic compounds with the methodologies learnt during the course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	М	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	М	S	М	S	S	М	S	М	S	S
S – Stroi	ng	1	1	1	M –	Mediu	n n	1	L	– Low

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation between PSO's and CO's

	A AF	R MARA	GATHAV	ALZ		
CO /PO		PSO1	TPSO2M	PSO3	PSO4	PSO5
CO1		3	3	3	3	3
CO2		3	3	3	03	3
CO3		3	3	- 3	23	3
CO4		3	-::::3 nr	3	m 3	3
CO5		3	3	3	3	3
Weightage		15	15	15	15	15
Weighted perce Contribution to	entage of Course Pos	3.0	3.0	3.0	3.0	3.0

DISCIPLINE DEVOTION

Semester-II/ Skill Enhancement Course I	SEC I-CHEMISTRY IN EVERYDAY LIFE	Course Code:						
Instruction Hours : 2	Credits: 2	Exam Hours: 3						
Internal Marks: 25	External Marks: 75	Total Marks: 100						
Cognitive Level	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing							
	K5 – Evaluating							
	K6 - Creating							
Objectives of the	1. To understand the chemistry of Water.							
course	2. To learn the importance of fertilizer, manure, fung							
	3. To gain knowledge about additives and flavouring							
	4. To learn manufacture and uses of cement, rubber	and rocket propellent.						
	5. To know the difference between dye and fibre.							
Course outline	UNIT-1:WATER CHEMISTRY							
	Water pollution: Sources and effects of wa	ter pollution (Domestic,						
	Industrial, Agricultural) Eutrophication. Heavy metals such as Hg, Cr, Cd, Zn, Cu and m	netals like Ph As Ba						
	Temperature, Radio activity, synthetic detergents							
(S)		EIC.						
DORAIS	UNIT-2: AGRICULTURAL CHEMISTRY Difference between fertilizer and manure – Superiority Biofertilizers: Rhizobium, Azatobacter, Cyano bacteri on the basis of mode of action, types of pests a	a. Pesticides: Classification						
Ž –	examples – safety measures while using pesticides.	and chemical nature with						
		nticides, Repellants,						
	Fumigants, Defoliants (Definitions and Examples)	· 1 ·						
	UNIT-3: FOOD CHEMISTRY Food additives – colouring (Natural and synthetic colours (Curcumin, Riboflavin, Betacarotene, Plair description and uses. Flavouring agents – Anti oxidants – Emulsifiers-Soft drinks aerated water (ingredients and side effects)	Acidulants and beverages.						
	UNIT-4: INDUSTRIAL CHEMISTRY Cement – Raw materials – Manufacture of Portland cement and Setting Cement. Rubber – Vulcanization and users of rubber. Rocket propellant – Soild, liquid a gas propellants.							
	UNIT-5: DYE A N D PIGMENT CHEMISTRY Dyes and Dyeing process: Difference between dye and pigment -Witt's colour theory, classification of dyes based on application (Direct, Vat, Acid, Reactive, Mordant and Disperse).							
Recommended Text	 K. Kumarasamy, A. Alagappa Moses and M. Vasanthy, "Environmental studies", Bharathidasan University, Thiruchirappalli. A Thankamma Jacob, A Text Book of Applied Chemistry, 1st edition, McMillan India Ltd (1979). 							

Reference Books	1. AlexRamani, "Food Chemistry", MJP publishers (2009), Chennai.					
	2. Jayashree Gosh, "Text book of Pharmaceutical Chemistry" New Delhi, S.					
	Chand & Company Ltd.,(2003).					
	3 .K. BagavathiSundari , "Applied Chemistry" MJP Publishers, (2006) Chennai.					
	4. Hesse P.R,"A text book of soil chemical analysis" John Murray, New York,					
	1971.					
	5. Buchel K.H, Chemistry of Pesticides, John Wiley & Sons New York 1983.					
Web site and	https://www.topfreebooks.org.					
e-learning source	https://bookboon.com.					
-						

Course Learning Outcomes(for Mapping with POs and PSOs) Students will be able:

CO 1:Identify and understand the unit operations involved in a process

CO 2: Differentiate fertilizer and manure MARAGATHAVAL

CO 3: Understand about Food additives - colouring agents, natural and synthetic colours.

CO 4: To gain knowledge about Industrial and Material Chemistry

CO-PO Mapping(Course Articulation Matrix)

								i i i i i i i i i i i i i i i i i i i		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	M	S	S	S	S	Μ
CO2	Μ	S	S	S	S	M	S	S	S	S
CO3	S	S	DIS M IP		BUT	S DI	V STI	DNM]	S	S
CO4	Μ	S	S	S	S	Μ	S	S	S	S
5– Stron	g	1		1	M -1	Mediun	1	1	L	– Low

S– Strong	M– Medium				
	Level of Correlation between PSO's and CO's				
00 m 0		7001	DCO	DGGG	

Level of Correlation Detween 150 S and CO S					
СО/РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-II/ Value	VAC I - CHEMISTRY IN CONSUMER PRODUCTS (Self Learning)	Course Code:					
Added Course I		E 11 2					
Instruction Hours : -	Credits: 2	Exam Hours: 3					
Internal Marks:-	External Marks: - Total Marks: 100						
Cognitive Level	K1 – Recalling						
	K2 – Understanding						
	K3 - Applying K4 – Analyzing K5 – Evaluating						
Objectives of the	K6 - Creating						
Objectives of the	• To know the preparation and applications of different types of						
course	soap.						
	• To learn about the composition of Sham	poos, Conditioners,					
	Powder, Nail polish and Lip stick.						
	• To gain knowledge about constituents and	d functions of Paint and					
	Varnish.	2					
	• To learn about preparation and applications	of various dyes.					
	• To know the preparation and uses of sym						
Rubber.							
Course Outline							
Course Outline	i m l						
	Manufacture of soaps, formulation of toilet soaps – different ingredients used						
	Soft soaps, shaving soaps and creams. Anionic detergents - manufacture and						
	applications – cationic detergents-manufacture and applications. UNIT II:COSMETICS Shampoos – different kinds of shampoos – anti – dandruff, anti – lice,						
	herbal and baby shampoos hair dye = manufacture of conditioners - skin						
	preparation – skin powder, nail polish, lip sticks.						
	Free and point of the point, in point, in point,						
	UNIT III-PAINTS AND VARNISHES						
	Constituents and their function – types and applications.						
	UNIT IV: DYES Classification – preparation and uses of alizarin, Indigo, Methyl orange, Phenolphthalein and Malachite green.						
	UNIT V: PLASTICS- RESINS AND RUBBER						
	Synthetic resins and plastics, synthetic polymers–important basic plastics						
	and uses -rubber, vulcanization.						
Recommended		lied Chemistry for Home					
	1. Thangamma Jacob, A Text Book of Applied Chemistry for Home						
Text	Science and Allied Sciences. 2. B.K.Sharma, Industrial Chemistry Goel Publishing House(1995).						
	2. D.K.Sharma, muusiriai Chemistry Goel Pu	ionsining mouse(1993).					
Reference Books	1. R.Norris Shreve, Chemical process Industr	ries.					
	2. Jayashree Ghosh, Fundamental Concept of Applied Chemistry, 1stEdition (2006) S.Chand Company Ltd.,						
	New Delhi.	1 v '					
Website and	1. https://www.topfreebooks.org.						
e-learning source	2. https://bookboon.com.						
0							

Students will be able:

CO1 : To learn depth knowledge about soap and detergent. To make plastics and know about the properties and applications of plastics

GATHAVA

CO2: To acquire the basic knowledge of classification, preparation and uses of dyes.

CO3: To know the applications of paint and varnishes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	Μ
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	М	S	S

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
Weight age	09	09	09	09	09
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

SEMESTER- III

Semester-III/ Core Course -VII	CC VII- ORGANIC REACTION MECHANISM-II	Course Code:						
Instruction Hours : 6	Credits: 5	Exam Hours: 3						
Internal Marks: 25	External Marks: 75	Total Marks: 100						
Cognitive Level	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating							
Objectives of the course	 K6 - Creating To understand the concept of aromaticity in benzenoid, non-ber heterocyclic and annulene compounds. To understand the mechanism involved in various types of organic reactions with evidences. To understand the applications of synthetically important reagents. To correlate the reactivity between aliphatic and aromatic compound To design synthetic routes for synthetically used organic reactions. 							
Course Outline	UNIT-I: Elimination and Free Radical React and E1cB mechanisms. Syn- and anti-elimination bond: Hoffmann and Saytzeff rules, Reactivity: E bases, leaving group and medium. Stereochemistr and cyclic systems, pyrolytic elimination. Long li – Production of radicals by thermal and photoch and stability of radicals, characteristics of free radical, reactions of radicals; polymerization aromatic substitutions, rearrangements. Reactivit aromatic substitutions, rearrangements. Reactivit aromaticsubstrates, reactivity in the attacking radio	ions: Mechanisms: E2, E1, as. Orientation of the double Effect of substrate, attacking ry of eliminations in acyclic ived and short-lived radicals nemical reactions, Detection radical reactions and free h, addition, halogenations, ty: Reactivity on aliphatic,						
	UNIT-II: Oxidation and Reduction React electron transfer, hydride transfer, hydrogen tran elimination, oxidative and reductive coupling oxidation reactions: Dehydrogenation by qui ferricyanide, mercuric acetate lead tetraacetate dioxide, osmium tetroxide, oxidation of satu groups, alcohols, halides and amines. Reactions bonds - cleavage of double bonds, oxidation oxidation, oxidation by chromium trioxide-pyride reactions: Wolff- Kishner, Clemmenson, Re Trialkyl and triphenyltin hydrides, McF Homogeneous hydrogenation, Hydroboration wi Bouveault-Blanc Reduction	sfer, displacement, addition- g reactions. Mechanism of inones, selenium dioxides, , permanganate, manganese urated hydrocarbons, alkyl s involving cleavage of C-C ve decarboxylation, allylic ine, Mechanism of reduction osenmund, reduction with Fadyen-Steven's reduction,						

	UNIT-III: Rearrangements: Rearrangements to electron deficient carbon: Pinacol-pinacolone and semi-pinacolone rearrangements -applications and
	stereochemistry, Wagner-Meerwein, Demjanov, Dienone-phenol, Baker-
	Venkataraman, Benzilic acid and Wolff rearrangements. Rearrangements to
	electron deficient nitrogen: Hofmann, Curtius, Schmidt, Lossen, Beckmann
	and abnormal Beckmann rearrangements. Rearrangements to electron
	deficient oxygen: Baeyer-Villiger oxidation and Dakin rearrangements.
	Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens,
	[1,2]-Wittig and [2,3]-Wittig rearrangements. Fries rearrangement.
	Intramolecular Rearrangements – Claisen, Cope, Benzidine rearrangements.
	UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbon-hetero atom multiple bonds: Mannich reaction, acids, esters, nitrites, addition of Grignard reagents, Wittig reaction, Prins reaction, Stereochemical aspects of addition reactions. Additionto Carbon-Hetero atom Multiplebonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. Mechanism of condensation reactions involving enolates –Stobbe reactions. Hydrolysis of esters and amides,
	ammonolysis of esters.
	UNIT-V: Reagents and Modern Synthetic Reactions: Lithium diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium cyanoborohydride (NaBH ₃ CN), <i>meta</i> -Chloroperbenzoic acid (m-CPBA), Dimethyl aminiopyridine (DMAP), n-Bu ₃ SnD, Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU), , <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO), Phenyltrimethylammonium tribromide (PTAB). Diazomethane and Zn-Cu, Diethyl maleate (DEM), Copper diacetylacetonate (Cu(acac) ₂), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC), Meisenheimer complex. Suzuki coupling, Heck reaction, Negishi reaction, Baylis-Hillman reaction.
Recommended Text	 J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015. P. Y.Bruice, Organic Chemistry, 7thedn., Prentice Hall, 2013.
	 R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic Chemistry, 7th edn., Pearson Education, 2010.

Reference	1. S. H. Pine, Organic Chemistry, 5 th edn, McGraw Hill									
Books	International Editionn, 1987.									
	2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing									
	House, Bombay, 2000.									
	3. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,									
	Rinehart and Winston Inc., 1959.									
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.									
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-Wiley,									
	2010.									
Website and	1. https://sites.google.com/site/chemistryebookscollection02/home/organic-									
e-learning	chemistry/organic									
source	2. https://www.organic-chemistry.org/									
Course Learnin	g Outcomes (for Mapping with POs and PSOs)									

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5: To design new routes to synthesis organic compounds.

CO-PO Mapping	g (Course Articulation Matrix	()
---------------	-------------------------------	------------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	SAN	S	S	S	М	S]§	S	S
CO 3	S	S	Μ	S	S	S I	S	M	S	S
CO 4	Μ	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	М	S	S	M	S	Μ	S	S
5 – Stroi	ng	1			M –	Mediur	n		L	– Low

		ТҮ 🦵 —			
СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-III/ Core Course -VIII	CC VIII - COORDINATION CHEMISTRY – I	Course Code:			
Instruction Hours : 6	Credits: 5	Exam Hours: 3			
Internal Marks: 25	External Marks: 75	Total Marks: 100			
C	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating				
Objectives of the course	 To gain insights into the modern theories of b compounds. To learn various methods to determine the sta complexes. To understand and construct correlation diagr electronic transitions that are taking place in the taking place in the taking the various substitution and mechanistic pathways of reactions in complexes. To evaluate the reactions of octahedral and complexes. 	bility constantsof ams and predictthe he complexes. electron transfer es.			
Course Outline	UNIT-I: Modern theories of coordination composition compounds -Crystal field theory - sin octahedral, tetrahedral and square planar symme of 10Dq - factors affecting 10Dq - spectrochemic field stabilization energy for high spin and low evidences for crystal field splitting - site select Anti spinels - Jahn Teller distortions and its com theories-Molecular Orbital theory and energy let weak and strong fields, Sigma and pi bonding in octahedral and square planar complexes.	al field theory - splitting of d orbitals re planar symmetries – measurement - spectrochemical series - crystal h spin and low spin complexes - ng - site selections in spinels and ions and its consequences. Advance ry and energy level diagrams concept nd pi bonding			
	 UNIT-II: Spectral characteristics of complexes: T -characteristics of d-d transitions - charge transfer rules for electronic spectra - Orgel correlation diagra energy level diagrams - Nephelauxetic series - R calculation of inter-electronic repulsion parameter. UNIT-III: Stability and Magnetic property Stability of complexes: Factors affecting sta Thermodynamic aspects of complex formation, formation constants, Stability correlations, statistic effect, Determination of stability constant and complexes: Formation curves and Bjerrum's half r method, Spectrophotometric method. Magnetic p Spin-orbit coupling, effect of spin-orbit coupling of quenching of orbital magnetic moments. 	spectra – selection ms - Sugano-Tanabe cacha parameter and of the complexes: bility of complexes, Stepwise and overall cal factors and chelate composition of the nethod, Potentiometric roperty of complexes:			

1	UNIT-IV: Kinetics and mechanisms of substitution reactions of
	octahedral and square planar complexes: Inert and Labile complexes;
	Associative, Dissociative and SNCB mechanistic pathways for
	substitution reactions; acid and base hydrolysis of octahedral
	complexes; Classification of metal ions based on the rate of water
	replacement reaction and their correlation to Crystal Field Activation
	Energy; Substitution reactions in square planar complexes: Trans effect,
	theories of trans effect and applications of trans effect in synthesis of
	square planar compounds.
	UNIT-V: Electron Transfer reactions in octahedral complexes: Outer
	sphere electron transfer reactions and Marcus-Hush theory; inner sphere
	electron transfer reactions; nature of the bridging ligand in inner sphere
	electron transfer reactions. Photo-redox, photo-substitution and photo-
	isomerisation reactions in complexes.
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic
Text	Chemistry – Principles of structure and reactivity, 4th Edition,
2	Pearson Education Inc., 2006
	2. GL Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson
	Education Inc., 2008
	3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
	4. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced
	Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.
Reference Books	1.5 Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders
	Publications, USA, 1977.
	2. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic
	Chemistry, 5th Edition, Oxford University Press, 2010.
	3. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas,
	John Wiley, 2002, 3rd edn.
	4. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.
	5. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman
	and Co, London, 2010.
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-
e-learning source	fall-2008/pages/syllabus/
Course Learning (Dutcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: Understand and comprehend various theories of coordination compounds.

CO2: Understand the spectroscopic and magnetic properties of coordination complexes.

CO3: Explain the stability of complexes and various experimental methods to determine the stability of complexes

CO4: Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

CO5: Comprehend the kinetics and mechamism of substitution reactions in octahedral and square planar complexes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO 1	S	S	S	S	Μ	S	S	S	S	Μ	
CO 2	М	S	S	S	S	М	S	S	S	S	
CO 3	S	S	Μ	S	S	S	S	Μ	S	S	
CO 4	Μ	S	S	S	S	Μ	S	S	S	S	
CO 5	М	S	М	S	S	М	S	Μ	S	S	
S – Stroi	S – Strong				M – Medium					L – Low	

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	AR3MA	RAGATH	AVA3	3	3
CO4	3	3	3	- 3	3
CO5	3	- 3	3	3	3
Weightage	-15	- 15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0
	8			1 mil	

Semester-III/ Core Course -IX	CC XI -PHYSICAL CHEMISTRY PRACTICAL-I	Course Code:				
Instruction Hours :6	Credits: 4	Exam Hours: 6				
Internal Marks: 25	External Marks: 75	Total Marks: 100				
Cognitive Level	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating					
Objectives of the course	 K6 - Creating To perform the various techniques of physical chemistry experiments. To evaluate the activation energy of the reaction by following first order kinetics. To construct the phase diagram of two component system formingcongruent melting solid and find its eutectic temperatures and compositions. To determine the kinetics of adsorption of oxalic acid on charcoal. 					
Course Outline	 Determination of CST and stud CST. Determination of distribution of of equilibrium constant for the for Determination of the rate Oxidation, both by titrimetry and Comparison of acid strengths by Determination of the energy factor. Determination of the energy factor. Association factor of benzoic water. Determination of molecular weig Phase diagram – simple eutectic Phase diagram – three component Adsorption of oxalic acid on character 	coefficient and determination formation of KI ₃ . Constant for Persulphate ad clockreaction. Kinetics. of activation and frequency acid between benzene and ght by Rast macro method. system.				

Recommended	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
Text	Viva Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical
	Chemistry, New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,
	Springer, New York, 2011.
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing
	House, 2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical
	Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,
	Narosa Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3rd Ed., Wiley-
	Blackwell
Website and	https://web.iitd.ac.in/~nkurur/2015-
e-learning source	16/Isem/cmp511/lab_handout_new.pdf
Course Learning C	Dutcomes (for Mapping with POs and PSOs)
Students will be able	e:
	diagram 3 component systems and analyze it
CO 2: Determine the k	cinetics of the reactions DEVOTION
CO 3: Predict the conc	centration of two analytes in a mixture

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
S Strop	20	•		MM	1:	1	•		Т	Low

S – Strong

M-Medium

L – Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
Weightage	09	09	09	09	09
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-III/ Core Choice Course -III	CCC III- NON – CONVENTIONAL ENERGY SOURCES	Course Code:					
Instruction Hours : 6	Credits: 4	Exam Hours: 3					
Internal Marks: 25	External Marks: 75	Total Marks: 100					
	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating						
Objectives of the course	 Understand the various types of energy sources. Learn about the solar energy Introduce the importance of wind energy & fuel cells. Acquire knowledge about bio energy. Know the differential power plants 						
Course Outline	 UNIT: I ENERGY SOURCES Introduction to energy - Different forms of energy - Primary & Secondary Energysources - Various types of Conventional Energy Sources-Fossil fuel energy, Hydraulic energy & Nuclear energy - Various types of Non-Conventional Energy Sources - Wind energy, Tidal energy & Solar energy. UNIT: II SOLAR ENERGY Introduction - Solar Constant - Solar Radiation at the Earth's Surface - Solar Energy applications - Solar Cooker - Design principle , constructional details and limitations of Solar Cooker - Solar Water heater - 						
	Solar distillation - Solar Pumping - Electricity from Solar Energy - Strlighting system. UNIT: III WIND ENERGY AND FUEL CELLS Wind energy - Classification of wind mills - Horizontal Wind mill Vertical WindMills – Advantages & Disadvantage of Wind energy.						
	 Fuel cells – Introduction - Working of Fuel Cell - Advantages of Fuel Cell UNIT: IV BIO ENERGY Introduction - Bio Gas and its Compositions - Process of Bio generation – Wet Process, dry Process - Raw Materials available for Bio Fermentation - Constructional Details of Biogas Plant - Utilization benefits of Biogas Technology - Economical, social environmental health benefits of bio gas - Utilization - KVIC Bio gas Plant - Advantage Bio Gas technology. 						
	UNIT: V TIDAL POWER PLANTS Introduction to Tidal Power Plants - Plants - Working of Different Tidal Power suitability of the site for tidal power disadvantages of Tidal Power Plants - Oplants.	Plants - Factors affecting the er plant- Advantages and					

Recommended	1.	G.D Raj, Non– Conventional Energy Sources, Khanna Publisher, 1998.							
Text	2.	G.S. Sawhney ,Non –Conventional Energy Sources, PHIL earning, 2005.							
	3.	N.K Bansal, Non–Conventional Energy Source, Vikas Publishing house.							
	4.	B.H. Khan, Non Conventional Energy Sources, McGraw Hill							
		Publications,3 rd Edition							
Reference Books									
	1.	Roger H.Charlier, Charles W. "Ocean Energy- Tide and Tidal Power"							
		ISBN: Library of Congress Control Number :2008929624_c Springer-							
		Verlag Brerlin Heidelberg 2009.							
	2.	John F.Walker& N.Jenkins, "Wind Energy Technology", John Willey and							
		Sons Chichester, U.K-1997.							
	3.	T.H. Taylor Alternate Energy Sourcesby. Adam Hilger Ltd, Bristol							
Course Learning Ou	itcoi	nes (for Manning with POs and PSOs)							

Students will be able:

CO 1: To ensure the students understand the basic concept of energy.

CO 2: Understand the solar devices such as solar cooker, solar water heater.

CO 3: Get awareness about the wind energy and conversion to the generation of power.

CO 4: An introduction of composition of biogas and generation of power.

CO 5: Study about the principles of tidal power plant

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	S	S	S	S	S	Μ
CO 2	S	М	S	S	S	S	S	S	S	S
CO 3	S	М	S	S	S	S	S	S	S	S
CO 4	S	S	S	S	S	S	S	S	S	S
CO 5	S	S	S	S	S	S	S	S	S	S

S – Strong L – Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-III/	IBC-I Chemometrics and	Course Code:					
Industry Based Course -I Instruction Hours : 4	Quality control in Industry Credits: 3	Exam Hours: 3					
Internal Marks: 25	External Marks: 75	Total Marks: 100					
		Total Marks: 100					
Cognitive Level	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating						
	K6 - Creating						
Objectives of the course	 Provides essential theoretical background of chemometrics Students will have exposure on a variety of quality control measures 						
Course outline	 UNIT-1:Chemometrics: Introduction,-various techniques- Partial least squares (PLS), Soft independent modeling of class Analogy (SIMCA), Methods based on factor analysis : Principle component regression (PCR), Target Fourier Analysis (TFA) UNIT-2:Statistical Quality Control:Statistical Quality Control 						
	 Techniques: Statistical treatment of data. Control charts, Performance Evaluation uncertainties in measurement. UNIT-3: Pharmaceutical Quality Control: In-process quality control on various dosage forms, Sterile and non- sterile operations. Factors affecting stability of formulations and shelf - life prediction, techniques to determine and improve shelf life UNIT-4: Quality control of packaging materials: Types of plastics, primary and secondary packaging materials (glass, 						
	 closures, cartons, blister and their control) UNIT-5:Quality control standards for pesticides: Structure- responsabilities and authority of individuals in the laboratory- Document and data recording-Internal quality audits 						
Recommended Text	-	Quality Control, John Wiley &					
Reference Books	 Quality Assurance of Asepti Part A Fifth edition, Alison Society and the NHS Ph Committee,2016. Manging for quality and per James R.Every, William M learning 2014 Massart,D.L., et al.,(1997) Technology 20A:Hand book Part A. 	c Preparation Services: Standards M Beaney, Royal Pharmaceutical harmaceutical Quality Assurance formance excellence ninth edition LLindsay South-western Cengage Data handling in Science and of Chemometrics and Qualimetrics					
Website and	https://www.topfreebooks.org.						
e-learning source	https://bookboon.com.						

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able :

CO1 :Identify and understand the unit operations involved in a processCO2:To understand the various techniques involved in chemometricsCO3:To gain knowledge about Quality Control in PharmaceuticalCO4:To know about Quality control of packaging materials and pesticides

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	Μ	S	S	S	S	М
CO2	Μ	S	S	SR	MASRA	G M H/	AVS/	S	S	S
CO3	S	S	M	S	S	S	S	М	S	S
CO4	Μ	S	S	S	S	M	S	S	S	S
S- Stron	g	1	Leve	el of Co		Medium n betwe		's and C	O's	L – Low
CO/PO				PS	501	PSO2	PSO	3 PS	604	PSO5
CO1				Į.	3	3	3		3	3
CO2					3	3	3		3	3
CO3					3	3	3		3	3
CO4				10	3	3	3		3	3
Weight	age		DISC	IPLINE	12	12	DEV12	TION	2	12
0	ed perc oution t	0	of Cours	e 3	3.0	3.0	3.0	3	3.0	3.0

CO-PO Mapping (Course Articulation Matrix)

Semester-III/ Skill Enhancement Course -II	SEC-II : INDUSTRIAL CHEMISTRY	Course Code:				
Instruction Hours : 2	Credits: 2	Exam Hours: 3				
Internal Marks: 25	External Marks: 75	Total Marks: 100				
Cognitive Level	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating					
Objectives of the course	 Understand and develop efficacy in planning, designing, production processing and marketing Study water testing treatment and petroleum refining. Acquire in depth knowledge of basic and applied area of industrial chemistry. Know the industrial production of soaps, detergents and perfumes. Learn the process of photography. 					
Course outline	 UNIT-1: BASIC IDEAS ABOUT UNIT OP Basic ideas about unit operation – Flowchar Batch versus continuous processing – chemical chemical process control – chemical pro evaluation – plant location –management in creativity. UNIT-2: PETROLEUM AND DETERGEN Petroleum: Origin, refining, cracking, refor number, LPG, synthetic gas, synthetic petrol. Detergents – raw materials – manufacture surfactants – methods. UNIT-3: PULP, PAPER AND PLASTICS Pulp and paper industries – Sulphite, Sulphate, paper manufacture – speciality paper– pap Plastics – manufacture – resin – manufactur polymerization –Hexamethylenetetramine pla Hydrolytic wood – Phenolic treatment wood – manufacture & advantages UNIT-4: PERFUMES Introduction – Definition - uses and econor and synthetic perfumes – Flower perfumes – flavours. UNIT-5: SUGAR CHEMISTRY AND PHC Sugar manufacture – starch and related production 	 ts – Chemical conversion – l process selection – design – ocess economics – market productivity and VTS ming, knocking and octane e – Biodegradability of Soda, Ground wood pulp for er stock– structural boards. ring processes–condensation nstics. Wood conversions – chip wood and their 				
alcohol – Butanol - acetone – vinegar – acetic acid – citric acid – lactic acid by fermentation. Industrial and military explo manufacture of safety matches. Colour photography – theory – sand process–special applications of photography.						

Recommended Text	1. Charkarbharthy BN, Industrial Chemistry, Oxford and IBH Publishing. Co. 1 st Edition. NewDelhi.					
	2. Danielsetal., Experimental Physical chemistry, 7 th Ed,					
	NewYork,McGrawHill,1970.					
	3. Sharma BK, Industrial Chemistry, geol Publishing House, Meerut.					
Reference Books	1. Norris Shreve.R. andJoseph.A.BrinkJr-Chemical process					
	IndustriesMcGrawHill, I International Book Company,London.					
	2. BrainA.C.S.Remhold-Production and properties of Industrial					
	Chemicals – NewYork					
	3. Burgh, A Fermentation industries – Interscience, New York.					
	4. Gilbert .J. Handbook of Technology and Engineering-, VanNostr					
	and Reinhold, London.					
	5. Guthrie. V-Petroleum products Handbook. McGrawHill, Tokyo.					
Website and	https://www.essentialchemicalindustry.org.					
e-learning source	https://www.tandfonline.com					

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able :

CO1:Identify and understand the unit operations involved in a process

CO2:Design common heat exchangers like double pipe and shell & tube to determine relevant design parameters

CO 3:Understand the commercial processes used for their fining and processing of natural gas and crude petroleum

CO 4:Solve materials and energy balances alone and simultaneously on chemical process system

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	М	S	S	S	S	М
CO2	M	S	S	S	S	Μ	S	S	S	S
CO3	S	S	М	S	S	S	S	М	S	S
CO4	M	S	S	S	S	Μ	S	S	S	S
C4						 N∕Γ - J°				T

S–Strong

M– Medium

L – Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-III/	VAC II ANALYTICAL TECHNIQUES	Course Code:							
Value Added Course -II	(Self Learning Course)								
Instruction Hours : -	Credits: 2	Exam Hours: 3							
Internal Marks: -	External Marks:-	Total Marks: 100							
Cognitive Level	K1 – Recalling								
	K2 – Understanding								
	K3 - Applying								
	K4 – Analyzing K5 – Evaluating								
	K6 - Creating								
Objectives of the	• To study thermo analytical techniques for	orchemical analysis.							
course	• To understand electro analytical techniq	iues.							
	• To learn the nature of errors and their ty								
	• To gain sound knowledge on methods								
	 To learn diffraction studies and its applic 	• •							
	• To learn unnaction studies and its appro-	cations.							
Course Outline	UNIT 1: THERMO ANALYTICAL METI	HODS							
	Thermogravimetry : Principle, factors	affecting thermogram,							
	instrumentation and thermal decompositi	•							
	CuSO4.5H2O								
	Differential Techniques : Instrumentation, experimental, instrumental								
	factors of DTA and D Thermal studies of CuSO4.5H2O by DTA and								
	determination of purity of pharmaceutical an transition studies by DSC-								
	evaluation of thermodynamic parameters.								
	UNIT 2: ELECTROANALYTICAL MET	HODS							
	Electro gravimetry : Principle, instrum	entation, deposition and							
	separation Electrolysis at constant current an								
	Coulometry : Principle, controlled potential								
	of nickel and cobalt, coulometric titration, ir								
	of Sb(III)Potentiometry : Principle,	potentiometric titration,							
	equivalence point potential for (i)Fe2+-	Ce ⁴ + system (ii) Fe^{2} +							
	MnO4 ⁻ /H+ system, Colorimetry Been	- lambert's law and							
	spectrophotometric method of estimation, principle and methods of								
	visual colorimetry. Estimation of iron and nickel by visual colorimetry.								
	UNIT 3: DATA ANALYSIS								
	ERRORS : Various types of errors – p	precision and accuracy –							
	significant figures – various statistical tes	st on accuracy of results,							
	positive & negative deviation from accura								
	distribution, the Gaussian distribution – t								
	· · · ·	ation and standard							
	deviation, reliability interval, deviation law of error distribution. Student's								
	comparison of the mean with the expected								
	results of two different methods, compar	-							
	methods by F-tests, gross errors and								
	52								

	results.Graphical methods Linear regression, regression line, standard deviation, correlationco-efficient.
	UNIT 4: CRYSTALLOGRAPHY
	Single crystal growth – low and high temperature, solution growth technique – gel and sol- gel methods. Melt growth – Bridgeman – stockberger method, Czochralski methods. Flux technique, physical and chemical vapour transport methods. Characterization – TGA/DTA/DSC methods, SEM/TEM analysis. Determination of hardness. Applications of single crystals.
	UNIT 5: DIFFRACTION STUDIES
	X-ray Diffraction -Powder and single crystal method, advantages over
	neutron diffraction methods, applications of x-ray diffraction method.
	Neutron diffraction, advantages over Electron diffraction, limitations.
/.	Electron diffraction studies -limitations and applications.
Recommended Text	1. A.K.Srivastava, P.C.Jain Chemical Analysis: An Instrumental Approachfor B.Sc. Hons.& M.Sc classes, S. Chand Company Ltd.
A. [2.D. C. Harris, Quantitative Chemical Analysis; 4t ^h Ed.,W.H.Freeman Publications,NewYork,1995.
	3.A. K. Srivastava, P. C Jain. Instrumental Methods of
	ChemicalAnalysis4.S.Gopalan. Analytical Chemistry
	5Clegg,W, Crystal structure determination, Oxford University press,
	New York.
Reference Books	1.D.B.Hibbert and J.J.Gooding, Data Analysis for Chemistry; Oxford
	University Press, UK,2006 2. J. Topping, Errors of Observation and Their
	Treatment;4 th Ed.,ChapmanHall, London,1984.
	3. Mahinder Singh. Text Book of Analytical ChemistryInstrumental
	Techniques
Website and	https://edu.rsc.org
e-learning source	https://edu.rsc.org
e rearning source	

Students will be able:

CO1: Explain the theoretical aspects of key analytical techniques and instruments

- **CO2:** Strategically plan analytical campaigns to apply to different types of samples and research objectives, including selection of the most appropriate technique/instrumentation for the students' research project.
- **CO3:** Undertake the correct sample preparation and characterization prior to analysis by the chosen techniques or instruments.

CO4: Design an analytical work-flow to acquire data

CO5: Process data from the chosen instruments and demonstrate understanding of the limitations and quality of the data. Justify the approach taken to data processing.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	S Mara	S GATH/	S	S	S	S
CO 2	S	S	S		AGS	TSNA	MS	S	S	S
CO 3	S	S	S	S	S	S	S	S	S	S
CO 4	S	S	S	S	S	S	S T	S	S	S
CO 5	S	S	S	S	S	S	S	ទត្ត	S	S
CO /PO	<u> </u>		Level	Y	elation b	PSO2	PSO's a	and CO's		PSO5
CO/PC)			- H	3	<u>FSU2</u>	3	<u>5 PS</u>		3
CO1 CO2			DISC	IPLIN	3	3	DEV3	TION		3
CO3					3	3	3		3	3
CO4					3	3	3		3	3
CO5					3	3	3		3	3
Weight	age				15	15	15	1	5	15
0	ed percontion t	0	of Cours	e 3	3.0	3.0	3.0	3.	0	3.0

CO-PO Mapping (Course Articulation Matrix)

Semester-IV/ Core Course -X	CC X- COORDINATION CHEMISTRY – II	Course Code:
Instruction Hours : 6		Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100
Cognitive Level Objectives of the	 K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating To recognize the fundamental conce 	pts and structural aspects of
course	 organometallic compounds. To learn reactions of organometallic of behaviour. To identify or predict the structure usingspectroscopic tools. To understand the structure and bondin To evaluate the spectral characteristics 	compounds and their catalytic of coordination compounds ng in coordination complexes.
Course Outline	cyclopentadienyl complexes – Examples a in metallocenes; fluxional isomerism. Met diagram of CO; Carbonyl clusters : Low nuclearity an clusters – Structures based on polyhedral or Wade's rule.	d bonding – bonding modes, otor nature of carbonyl group, oxidation states of metals); nds based on M-C bond – 18 complexes (example: Ziese's l-allyl complexes; Metal- and MO approach to bonding al – carbonyl complexes: MO d high nuclearity carbonyl skeleton electron pair theory
	UNIT-II: Reactions and catalysis of a Reactions of organometallic compounds: elimination (α and β eliminations), m Organo-metallic catalysis: Hydrogenatic catalyst), hydroformylation of olefins usin (oxo process), oxidation of olefin isomerisation, water gas shift reaction, cy acetylenes using Reppe's catalysts UNIT-III: Inorganic spectroscopy -I: coordination on the stretching frequency-s aqua, nitro, thiocyanato, cyano, thiour spectroscopy of carbonyl compounds. NMI applications of ¹ H -NMR spectroscopy i inorganic complexes, fluxional molecules, NMR spectroscopy.	Oxidative addition, reductive nigratory insertion reaction. on of olefins (Wilkinson's or cobalt or rhodium catalysts (Wacker process), olefin vclo-oligomerisation of IR spectroscopy: Effect of sulphato, carbonato, sulphito, rea, DMSO complexes; IR R spectroscopy- Introduction, n structural identification of

	 UNIT-IV: Inorganic spectroscopy-II: Introductory terminologies: g and A parameters-definition, explanation and factors affecting g and A; Applications of ESR to coordination compounds with one and more than one unpaired electrons – hyperfine and secondary hyperfine splitting and Kramer's doublets; ESR spectra of Fe(II), Ni(II) complexes, Mossbauer spectroscopy – Mossbauer effect, Mossbauer active nuclei, Doppler shift, Isomer shift, quadrupole splitting and magnetic interactions. Applications of Mössbauer spectra to Fe and Sn compounds. UNIT-V: Photo Electron Spectroscopy: Theory, Types, origin of fine structures - shapes of vibrational fine structures – adiabatic and vertical transitions, PES of homonuclear diatomic molecules (N2, O2) and heteronuclear diatomic molecules (CO, HCI) and polyatomic molecules (H2O, CO2) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations. Optical Rotatory Dispersion – Principle of CD and ORD, Assignment of absolute configuration using CD and ORD techniques.
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.
Reference Books	 Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.
Website and e-learning source	https://archive.nptel.ac.in/courses/104/101/104101100/

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds **CO2**: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in **CO4**:Understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	М	S	S
CO 4	Μ	S	S DISCI	S PLINE	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	C SU.	M	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

S – Strong

M – Medium

L – Low

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-IV/ Core Course -XI	CC XI- PHYSICAL CHEMISTRY-II	Course Code:					
Instruction Hours :6	Credits: 5	Exam Hours: 3					
Internal Marks: 25	External Marks: 75	Total Marks: 100					
Cognitive Level Objectives of the	 K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating To understand the essential characted 	eristics of wave functions and					
course	 need for the quantum mechanics. To know the importance of quan particle in abox, rigid rotor and harm To apply the quantum mech polyelectronic systems. To familiarize the symmetry in mogroups. To predict the vibrational mode concepts of group theory. 	ntum mechanical models of nonic oscillator. hanics to hydrogen and plecules and predict the point es, hybridization using he					
Course Outline	UNIT-I: Wave particle duality, Uncertainty principle, Particle wave and Schrodinger wave equation, wave function, properties of wave function. Properties of wave function, Normalized, Orthogonal, orthonormal, Eigen values, Eigen functions, Hermitian properties of operators. Introduction to quantum mechanics-black body radiation, photoelectric effect. Need for quantum mechanics, Postulates of Quantum Mechanics, Schrodinger wave equation, Time independent and time dependent						
	UNIT-II: Quantum models: Particle in a box-1D, two dimensional and three-dimensional, degeneracy, application to linear conjugated molecular system, free particles, ring systems. Harmonic Oscillator-wave equation and solution, force constant and its significance. Rigid Rotor-wave equation and solution, calculation of rotational constants and bond length of diatomic molecules.						
	UNIT-III: Applications to Hydrogen Hydrogen atom and hydrogen like ions, Ha solutions, radial and angular function distribution functions. Approximation met wave function, variation integral and appl Perturbation method - first order app theorem and Kohn-Sham equation, Heliu exclusion principle and Slater determination.	amiltonian-wave equation and hs, representation of radial hods –variation methods: trial lication to particle in 1D box. plications. Hohenberg-Kohn					

	 UNIT-IV: Group theory: Groups, sub groups, symmetry elements, operations, classification-axial and non-axial. Dihedral point groups- C_n, C_{nh}, D_n, D_{nh}. Matrix representation and classes of symmetry operations, reducible irreducible and direct product representation. The Great orthogonality theorem – irreducible representation and reduction formula, construction of character table for C_{2v}, C_{2h}, C_{3v} and D_{2h} point groups. UNIT-V: Applications of quantum and group theory: Hydrogen Molecule-Molecular orbital theory and Heitler London (VB) treatment, Energy level diagram, Hydrogen molecule ion; Use of linear variation function and LCAO methods. Electronic conjugated system:Huckel
	method to Ethylene butadiene, cyclopropenyl, cyclo butadiene and Benzene. Applications of group theory to molecular vibrations, electronic spectra of ethylene.
Recommended	1. R.K. Prasad, Quantum Chemistry, New Age International
Text	Publishers, New Delhi, 2010, 4th revised edition.
	2. F. A. Cotton, Chemical Applications of Group Theory, John
	Wiley & Sons, 2003, 2 nd edition.
	3. A. Vincent, Molecular Symmetry and Group Theory. A
	Programmed Introduction to Chemical Applications, John and
	Willy & Sons Ltd., 2013, 2 nd Edition.
	4. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy,
	Pearson, New Delhi, 2018, 4 th edition.
	5. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India
	Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva
	Books PW. Ltd, 2013, 2 nd edition.
Reference Books	1. N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th
	edition.
	2. D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular
	Approach, Viva Books
	Pvt. Ltd, New Delhi, 2012.
	3. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum
	Mechanics of Chemical
	Systems, Oxford & IBH Publishing Co., New Delhi, 1999.
	4. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications,
	Prentice Hall. Inc, 1980
	5. J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London,
Website and	2011, Reprint.
e-learning source	1. <u>https://nptel.ac.in/courses/104101124</u> 2. <u>https://ipc.iisc.ac.in/~kls/teaching.html</u>
¥	Dutcomes (for Mapping with POs and PSOs)
Students will be abl	
CO1. To diamond	u. - The manufaction of the set is a set of the set of the set is the set is the set of the set is the set of the set is the set of

CO1: To discuss the characteristics of wave functions and symmetry functions.

CO2: To classify the symmetry operation and wave equations.

CO3: To apply the concept of quantum mechanics and group theory to predict the electronic structure.

CO4: To specify the appropriate irreducible representations for theoretical applications.

CO5: To develop skills in evaluating the energies of molecular spectra.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	SAR	MARA	G, S th	ANM	S	S	S	S
CO 5	М	S-	М	S	S	М	S	М	S	S
5 – Stroi	ng	3	F		M –	Mediu	m	<u>_</u>	L	- Low

DORAI

.

– Medium

СО/РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	-3	3	3	3
CO3	3	3	3	3	3
CO4 DISCIPLINE	3	DBVO	1013	3	3
CO5	DUSIY	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-IV/ Core Course -XII	CC XII- PHYSICAL CHEMISTRY PRACTICAL - II	Course Code:
Instruction Hours : 6		Exam Hours: 6
Internal Marks: 40	External Marks: 60	Total Marks: 100
	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating	
Objectives of the course	 To perform the various technique experiments. To understand the principle of conductometric titrations. 	
Course Outline	 Any ten experiments (to be decided by the Following experiments. <i>I.</i> Conductometric Titrations Estimation of strong acids. Estimation of mixture of acids Estimation of mixture of bases 4. Estimation of halides Verification of Ostwald's dilution Determination of solubility of span 11. EMF Measurements Estimation of KI [KMno4Vs KI] Estimation of mixture of halides [F 10. Estimation of strong acid [NaoH V Estimation of Acetic acid [NaoH V Estimation of mixture of acids [Na Determination of dissociation cons Determination of solubility of span 	law singly solute salt. KCl + KI] /s HCl] /s CH ₃ COOH] toH Vs HCl + CH ₃ COOH] tant of organic acid. singly soluble salt.

	1 / Vogel's Text book of Practical Organic ("hemistry" 5th Fd									
Recommended Text	<i>1.</i> Vogel's Text book of Practical Organic Chemistry, 5th Ed, ELBS/Longman, England, 2003.									
ΤζΑί	2. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, <i>Vogel's</i>									
	 <i>Textbook of Quantitative Chemical Analysis</i>; 6th ed., ELBS, 1989. J. D. Woollins, <i>Inorganic Experiments</i>; VCH: Weinheim, 1995. 									
	4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva									
	Books, New Delhi, 2009.									
	5. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.									
	Viswanathan Co. Pvt., 1996.									
Reference Books	1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –									
Kelefence Dooks	Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.									
	2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.									
	Chand and Co., 2011.									
	3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel									
	Publishing House, 2001.									
	 G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical Chemistry, 8th edition, McGraw Hill, 2009. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S. 									
	Chand and Co., 1987.									
Website and										
e-learning source	1. https://bit.ly/3QESF7t									
e-learning source	2. https://bit.ly/3QANOnX									
Course Learning	Dutcomes (for Mapping with POs and PSOs)									
Students will be able										
	Ily plan and perform all the experiments									
	ind record systematically the readings in all the experiments									
	and process the experimentally measured values and compare with									
graphical data.										
graphical uata.	DISCIPLINE DEVOTION									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
S – Stron	g	M – Medium L – Lov						– Low		

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
Weight age	09	09	09	09	09
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Semester-IV/ Core Course -XIII	PROJECT	Course Code:
Instruction Hours : 6	Credits: 4	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Semester-IV/ Elective Course - III	EC III- POLYMER CHEMISTRY	Course Code:						
Instruction Hours : 6	Credits: 4	Exam Hours: 3						
Internal Marks: 25	External Marks: 75	Total Marks: 100						
Cognitive Level	K1 – Recalling K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating							
Objectives of the course	 Ko - Creating To learn the basic concepts and bonding in polymers. To explain various types of polymerization reactions and kinetics. To understand the importance of industrial polymers and their syntheticuses. To determine the molecular weight of polymers. To predict the degradation of polymers and conductivities. 							
Course Outline	 UNIT-I: Characterization, Molecular weight and its Determination Primary and secondary bond forces in polymers; cohesive energy, molecular structure, chemical tests, thermal methods, Tg, molecular distribution stability. Determination of Molecular mass of polymers: Number Averar molecular mass (M_n) and Weight average molecular mass (M_w) of polymers. Molecular weight determination of high polymers be physical and methods. UNIT-II: Mechanism and kinetics of Polymerization: Chain grow polymers: Ziegler Natta polymerization. Reaction kinetics. Step 							
	 growth polymerization, Degree of polymerization. UNIT-III: Techniques of Polymerization and Polymer Degradation Bulk, Solution, Emulsion, Suspension, solid, interfacial and gas phase polymerization. Types of Polymer Degradation, Thermal degradation mechanical degradation, photodegradation, Photo stabilizers, Solid and gas phase polymerization. UNIT-IV: Industrial Polymers: Preparation of fibre forming polymers elastomeric material. Thermoplastics: Polyethylene, Polypropylene polystyrene, Polyacrylonitrile, Poly Vinyl Chloride, Poly tetrafluor ethylene, nylon and polyester. Thermosetting Plastics: Phenol formaldehyd and expoxide resin. Elastomers: Natural rubber and synthetic rubber - Buna N, Buna-S and neoprene. Conducting Polymers: Elementaryideas; examples poly pyrrole and polyacetylene. Polymethylmethacrylate, polyimides polyamides, polyurethanes, polyureas, 							

1								
	UNIT-V: Polymer Processing: Compounding: Polymer Additives: Fillers,							
	Plasticizers, antioxidants, thermal stabilizers, fire retardants and colourants.							
	Processing Techniques: Calendaring, die casting, compression moulding,							
	injection moulding, blow moulding and reinforcing. Film casting,							
	Thermofoaming, Foaming. Catalysis and catalysts – Polymerization							
	catalysis, catalyst support, clay compounds, basic catalyst, auto-exhaust							
	catalysis, vanadium, heterogeneous catalysis and active							
	centres.							
RecommendedText	1. V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.							
	2. G.S. Misra, <i>Introductory Polymer Chemistry</i> , New Age International							
	(Pvt) Limited, 1996.							
	3. M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand &							
	Company, New Delhi, 2004.							
Reference	1. F. N. Billmeyer, Textbook of Polymer Science, Wiley Interscience, 1971.							
Books	2. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and							
	Engineering, Tata McGraw-Hill, 1978.							
Course Learning Out	Course Learning Outcomes (for Mapping with POs and PSOs)							
Students will be able:								
	CO1: To understand the bonding in polymers.							
-	plan and perform the various polymerization reactions.CO3: To							
observe and record the	processing of polymers.							

CO4: To calculate the molecular weight by physical and chemical methods.

CO5: To interpret the experimental data scientifically to improve the quality of syntheticpolymers.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

S – Strong

M – Medium

L - Low

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0